

TECHNICAL OPINION REPORT

SUBMITTED TO CIDB MALAYSIA | JANUARY 2015

PRODUCT

Glass Fiber Reinforced Polymer (GFRP)

APPLICANT

GFRP Technologies Sdn. Bhd.

FOREWORD

Construction Industry Development Board (CIDB Malaysia) is a statutory body enacted under the Act 520 in 1994. Its mission is to develop Malaysian Construction Industry towards global competitiveness. To support that mission, a number of functions were formulated and one of them is to encourage the improvement of construction techniques and materials. Under that function, CIDB is to carry out assessment and appraisal of innovations of any kind of product and technology related to construction and to publish its finding, in the form of Technical Opinion.

This Technical Opinion will provide a reference to the relevant / interested parties in the construction industry. CIDB assess innovation based on application and evaluation by its Technical Opinion. Applicants may use it as a supporting document for regulatory and approving authorities, architects, engineers and others in dealing with the new products and technologies.

This Technical Opinion is prepared on behalf of CIDB by The Technical Expert Panel on construction products, construction material and technology in Construction Industry. The Technical Expert Panel was set-up by CIDB and its members are drawn from experts that represent relevant sectors in the construction industry.

This Technical Opinion has been modeled based on international recommended practice.

CIDB Technical Expert Panel Committee for Glass Fiber Reinforced Polymer (GFRP)

Technical Expert Panel

Dr. Foo Chee Hung	(Chairman)	Construction Research Institute of Malaysia (CREAM)
Ir. Dr. Lim Char Ching	(Technical Expert Panel)	Jabatan Kerja Raya (JKR)
Dr. Teng Wan Dung	(Technical Expert Panel)	Standards and Industrial
		Research Institute of Malaysia
		(SIRIM)
Associate Professor Dr. Zulkiflle Bin Leman	(Technical Expert Panel)	Universiti Putra Malaysia (UPM)

Secretariat

Natasha Binti Dzulkalnine	CREAM
Suhaila Binti Abdul Halim	CREAM

GENERAL PROVISIONS

The purposes of this report are to assist respective parties concerned both applicant and granting approval authority, includes specification and also use of the subject. This report shall not be considered as approval.

Special note should be taken of the provisions and limitations set out and the period of validity of the Technical Opinion.

Technical Opinion is initially given a term of validity of three (3) years from the date of issue in the expectation that, after that period, the subject will no longer be an innovation. They can be reviewed within the first (12) twelve months and again as necessary during the life of the products or system described in the document. The limitation on the validity of the opinions should not be interpreted as implying a similarly limited life expectancy of the products or system described in the Technical Opinion. However, if experience shows poor overall standard of quality or performance, the Technical Opinion will be withdrawn.

The legitimacy and validity of the Technical Opinion can be verified at office of CIDB Head Office.

CIDB and the Technical Expert Panel shall accept no responsibility for the quality and performance of the products.

This document must not be duplicated in any form without permission from CIDB.

Disclaimer

While every effort is made to ensure accuracy of the information presented in this report, neither the Technical Expert Panel nor its Secretariats or CIDB will accept responsibility for any loss or damage that may arise in connection with the use of this document.

Definitions

Technical Opinion Programme	A programme initiated by CIDB with the aim to evaluate products, materials, components or system with regard to, but not limited to IBS. It normally covers wide range of innovative products to be used in local construction	
	industry	
Technical Expert Panel	Individuals are selected based on their expertise in building material,	
	particularly in Fiber Reinforced Polymer.	
Glass Fiber Reinforced Polymer	Based on the definition given by "Guide for the Design and Construction of	
	Structural Concrete Reinforced with FRP Bars":	
	i. Fiber Reinforced Polymer (FRP) is composite material consisting of	
	continuous fibers impregnated with a fiberbinding polymer then molded	
	and hardened in the intended shape.	
	ii. Fiber Reinforced Polymer (FRP) bar is a composite material formed into	
	a long, slender structural shape suitable for the internal reinforcement of	
	concrete and consisting of primarily longitudinal unidirectional fibers	
	bound and shaped by a rigid polymer resin material.	
	iii. GFRP is glass fiber reinforced polymer.	

Abbreviations

AASHTO	American Association of State Highway and Transportation Officials
ACI	American Concrete Institute
ASTM	American Society for Testing and Materials
CAN	Canada
CIDB	Construction Industry Development Board
CNR	National Research Council
CREAM	Construction Research Institute of Malaysia
CSA	Canadian Standards Association
DIN	Deutsches Institut Fur Normung E.V
EN	European Standards
FRP	Fiber Reinforced Polymer
GFRP	Glass Fiber Reinforced Polymer
GOST	State Union Standard
IBS	Industrialised Building System
JBDPA	Japan Building Disaster Prevention Association
JKR	Jabatan Kerja Raya
JSCE	Japan Society of Civil Engineers
MKRM	Makmal Kerja Raya Malaysia
QA	Quality Assurance
QC	Quality Control
SIRIM	Standards and Industrial Research Institute of Malaysia
UPM	Universiti Putra Malaysia
USA	United States of America
UV	Ultra Violet

Symbols

g	gram
mm	millimetre
mm²	square millimetre
К	Kelvin
Ν	Newton
°C	degree Celsius

List of Tables

Table 4.1:	Tensile Test and Modulus of Elasticity	4
Table 5.1:	Standards and Design Guides	5

		CONTENT	PAGE
1.0	IDENTI	FICATION	1
	1.1 N	Name of Product	1
	1.2 0	Country of Origin	1
	1.3 E	Dates of Evaluation	1
	1.4 F	Purpose	1
	1.5 A	Applicant & Address	1
2.0	DESCF	RIPTIONS	1
	2.1 0	General Descriptions of Product	1
	2.2 E	Element of Product	2
	:	2.2.1.Bar Diameter and Length	2
	:	2.2.2.Materials	2
	:	2.2.3. Process	2
	2.3 L	Jsage Application	2
	2.4 L	Jsage Limitation	2
	2.5 L	Jsage Advantages	2
	2.6 5	Special Conditions for Storage and Transportation	2
	:	2.6.1 Storage	2
	:	2.6.2 Transportation	3
3.0	BASIS	OF APPRAISAL	3
	3.1 E	Document Received from the Applicant	3
	:	3.1.1 Test reports on the product	3
	:	3.1.2 General Information	3
	:	3.1.3 Product Description	3
4.0	MATEF	RIAL: STANDARDS, SPECIFICATIONS AND TESTS	3
	4.1 T	Fechnical Properties of GFRP Reinforcement bar	3
		4.1.1 Tensile Test and Modulus of Elasticity	3
		4.1.2 Coefficient of Thermal Expansion using Dilatometer	4
5.0	COMPI	LIANCE TO INTERNATIONAL / MALAYSIAN STANDARDS	4
6.0	QUALI	TY ASSURANCE / QUALITY CONTROL	6
	6.1 QA	/ QC Plan	6
7.0	VALIDI	ITY OF OPINION	6
	7.1 Cor	ndition	6
	7.2 Rec	commendations from Technical Expert Panel	6
	7.3 Vali	idity	6

8.0 APPROVED OPINION ABSTRACT

9.0 REFERENCE

10.0 APPENDICES

Appendix A: Test Report on Fiber Reinforced Polymer Material Testing Appendix B: Evaluation Report on Coefficient of Thermal Expansion using Dilatometer Appendix C: General Information of GFRP Appendix D: Product Description of GFRP

1.0 IDENTIFICATION

1.1 Name of Product

Glass Fiber Reinforced Polymer (GFRP) Reinforcement Bar

1.2 Country of Origin

Russian Federation

1.3 Date of Evaluation

17 th April 2014	:	First meeting of Technical Expert Panel
15 th May 2014	:	Second meeting of Technical Expert Panel
26 th June 2014	:	Third meeting of Technical Expert Panel
18 th December 2014	:	Fourth meeting of Technical Expert Panel

1.4 Purpose

GFRP is a composite material consisting of glass fiber and epoxy ester resin which can be used as reinforcement bars in concrete construction.

1.5 Applicant & Address

GFRP Technologies Sdn. Bhd.

37-2, Block D1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Selangor, Malaysia.

Contact Perso	on :	Ms. Huang Mei Si
Telephone	:	03 – 7804 3101
Fax	:	03 – 7805 1529
Email	:	mei.c@airosat.sg

2.0 DESCRIPTIONS

2.1 General Descriptions of Product

The description of the product is in accordance with American Concrete Institute (ACI) 440.1R-06: Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars;

Fiber-Reinforced Polymer (FRP) is a composite material consisting of continuous fibers impregnated with a fiber-binding polymer then molded and hardened in the intended shape.

FRP bar is a composite material formed into a long, slender structural shape suitable for the internal reinforcement of concrete and consisting of primarily longitudinal unidirectional fibers bound and shaped by a rigid polymer resin material. The bar may have a cross section of

variable shapes and may have a deformed or roughened surface to enhance bonding with concrete.

GFRP is an acronym for Glass Fiber Reinforced Polymer.

2.2 Element of Product

2.2.1. Bar Diameter and Length

Diameter of reinforcement bar may range from 4 mm to 40 mm.

2.2.2. Materials

GFRP Reinforcement Bar is produced from materials such as glass fibers, epoxy resin and modifier.

2.2.3. Process

This product can be manufactured by means of pultrusion process.

2.3 Usage Application

GFRP reinforcement bar may be used as an alternative reinforcement to steel reinforcement bar in concrete constructions, for example, precast concrete elements, buildings, marine structures, etc. Structures can be designed with GFRP reinforcement bar according to accepted guidelines, such as ACI 440.1R-6 (USA), CSA-S806-02 (Canada) or DIN1045-1 (Germany).

2.4 Usage Limitation

GFRP reinforcement bar is brittle and cannot be bent or rebent on-site as compared to steel reinforcement bar. GFRP reinforcement bar should be shaped and bent in the manufacturing factory.

2.5 Usage Advantages

The advantages of using GFRP are lightweight, easy to handle, high tensile strength, and resistance to corrosions.

2.6 Special Conditions for Storage and Transportation

2.6.1 <u>Storage</u>

- a) Prevent exposure to UV radiation and sunlight
- b) Should be covered and stored in a dry environment

2.6.2 Transportation

a) To avoid damage to the ribs, the material should not be dragged on the ground

3.0 BASIS OF APPRAISAL

3.1 Documents Received from the Applicant

The following documents were received from GFRP Technologies Sdn. Bhd. for product evaluation by the Technical Expert Panel.

3.1.1. Test reports on the product

- a) Test Report on Fiber Reinforced Polymer Material Testing (see Appendix A, Metallurgical Consultancy and Services Sdn. Bhd.)
- b) Test Report on Coefficient of Thermal Expansion using Dilatometer (see Appendix B, SIRIM Berhad)

3.1.2. General Information

General information of GFRP product (see Appendix C, the Product Brochure of GFRP Reinforcement Bar submitted by GFRP Technologies Sdn. Bhd.)

3.1.3 <u>Product Description</u>

Product description of GFRP (see Appendix D, Frach Aeronautica Product Description of GFRP Reinforcement bar)

4.0 MATERIAL: STANDARDS, SPECIFICATIONS AND TESTS

4.1 Technical Properties of GFRP Reinforcement bar

The following test results have been provided by GFRP Technologies Sdn. Bhd.

4.1.1 <u>Tensile Test and Modulus of Elasticity</u>

Tensile test was performed by Metallurgical Consultancy and Services Sdn. Bhd. on 14th November 2014. The results are shown in Table 4.1.

Type of Test	Result
Nominal Tensile Area (mm ²)	59.53
Yield Load (N)	N/A
Yield Stress (N/mm ²)	N/A
Maximum Load (N)	59,692
Tensile Strength (N/mm ²)	1,002.75
Mode of Failure	Brittle
Modulus of elasticity (N/mm ²)	46, 690

Table 4.1:	Tensile	Test and	I Modulus	of Elasticity
------------	---------	----------	-----------	---------------

(Note: Refer to Appendix A)

4.1.2 Coefficient of Thermal Expansion using Dilatometer

The test was performed by the Technical Services and Consultancy Section, Advanced Materials Research Centre, SIRIM Berhad, on 13th November 2014. The test was conducted in a temperature range between 30^oC to 100^oC. Typical coefficient of thermal expansion was found to be between $6.19 \times 10^{-6} \text{ K}^{-1}$ to $8.08 \times 10^{-6} \text{ K}^{-1}$ for GFRP bar of 10mm nominal diameter . The full test report is attached in Appendix B.

5.0 LIST OF INTERNATIONAL STANDARDS

A list of International Standards related to this product is shown in Table 5.1:

No.	Country	Standard/Design Guide		
		(Reference from documents received from the Applicant)		
1.	USA	ACI 440.1R-06 "Guide for the design and Construction of		
		Structural Concrete Reinforced with FRP Bars", American		
		Concrete Institute		
		ACI 440.3R-04 "Guide Test Methods for Fiber-Reinforced		
		Polymers (FRPs) for Reinforcing or Strengthening Concrete		
		Structures"		
		AASHTO CFRP-1 "AASHTO LFRD Bridge Design Guide		
		Specifications for GFRP-Reinforced Concrete Bridge Decks and		
		Traffic Railings", American Association of State Highway and		
		Transportation Officials		
		ASTM D7617 "Standard Test Method for Transverse Shear		
		Strength of Fiber-reinforced Polymer Matrix Composite Bars",		
		American Standard Test Method (ASTM) International		
		ASTM D7205 "Standard Test Method for Tensile Properties of		
		Fiber Reinforced Polymer Matrix Composite Bars"		

Table 5.1:	Standards	and D	Design	Guides
------------	-----------	-------	--------	--------

2.	Canada	CAN/CSA-S807-10 "Specifications for Fiber-Reinforced					
		Polymers", Canadian Standard Association					
		CAN/CSA-S806-12 "Design and Construction of Building					
		Components with Fiber-Reinforced Polymers"					
		CAN/CSA-S6-06 Fiber-Reinforced Structures, "Canadian					
		Highway Bridge Design Code", pp.693 – 728					
		CSA-S806-02 Design and Construction of Building Components					
		with Fiber-Reinforced Polymers					
3.	Switzerland	Fib Bulletin No.40 "FRP Reinforcement in RC structures"					
4.	Japan	JSCE Series 23 "Recommendation for Design and Construction					
		of Concrete. Structures Using Continuous Fiber Reinforcing					
		Materials", Japan Society of Civil Engineers					
		JBDPA Design Manual "Japanese Design and Construction					
		Guidelines for Seismic Retrofit of Building Structures with FRP					
		Composites", Japan Building Disaster Prevention Association					
		(JBDPA)					
5.	Germany	DIN1045-1 "EN-Concrete Reinforced and Pre-stressed Concrete					
		Structures - Part 1: Design and Construction", Deutsches					
		Institut Fur Normung E.V					
6.	Russia	GOST 9.071-76 "Unified system of corrosion and ageing					
		protection. Vulcanized rubbers for articles working in liquid					
		corrosive media. Technical requirements" Russian Standards					
		and Technical Regulation					
		GOST 11262-80 "Plastics. Tensile test method"					
		GOST 25.604-82 "Design calculation and strength. Testings.					
		Methods of mechanical testing of polymeric composite materials.					
		Test for bending properties at normal, elevated and low					
		temperatures"					
		GOST 17320-71 "State system for ensuring the uniformity of					
		measurements. Plain gauges for dimensions over 500 mm.					
		Verification methods and means"					
		GOST 9550-81 "Plastics. Test methods for the determination of					
		elasticity modulus at strength, compression and bending"					
		GOST 4651-82 "Plastics. Compression test method"					
		GOST 11262-80 "Plastics. Tensile strength test method"					
7.	Europe	EN-13706 "Reinforced plastics composites. Specifications for					
		pultruded profiles Method of test and general requirements",					
		European Committee for Standardization					

8.	Italy	CNR-DT 203 "Guide for the Design and Construction of				
		Fiber-Reinforced Concrete Structures", CNR – Advisory				
		Committee on Technical Recommendations for Construction				
		CNR-DT 205 "Guide for the Design and Construction of				
		Structures made of FRP Pultruded Elements"				

6.0 QUALITY ASSURANCE / QUALITY CONTROL

6.1 QA / QC plan

The information on QA / QC is not available at the time of writing this report. Users may contact the Applicant for further details on QA / QC.

7.0 VALIDITY OF OPINION

7.1 Condition

The Technical Opinion Report given herein is based on a comprehensive evaluation of the product based on formal discussion with the Applicant together with documents and product information made available by the Applicant to the Technical Expert Panel.

This Technical Opinion report is valid for the product specification submitted for evaluation by GFRP Technologies Sdn. Bhd. It is the responsibility of the Applicant to notify CIDB of any changes in the product specification mentioned in this report.

7.2 Recommendations from Technical Expert Panel

The recommendations are made after a thorough evaluation conducted by the Technical Expert Panel. In the opinion of the Technical Expert Panel, the product has a potential to be used in the local construction industry. However, it is recommended that more information should be made available with respect to the product performance in the local climatic environment and in the following areas:

- i. Long term durability performance of GFRP as reinforcement bar in concrete
- ii. Structural design performance of GFRP as reinforcement bar in concrete
- iii. Any other tests deemed necessary for GFRP to be used as reinforcement bar in concrete

7.3 Validity

This Technical Opinion Report shall become invalid and irrelevant in the event the product does not comply with relevant International Standards or any approved equivalent Standards

currently in use. CIDB has the right to publicly announce any withdrawal related to this report subject to the terms above. This report is valid for three (3) years from the date of issuance.

8.0 APPROVED OPINION ABSTRACT

The Technical Expert Panel concludes that this product has a potential to be used in Malaysian construction industry. However, further research and development of the product performance in the local environment are encouraged. Applicant is advised to develop a QA / QC plan for GFRP production in Malaysia.

Dr. Foo Chee Hung Chairman

Dr. Teng Wan Dung Technical Expert Panel

Ir. Dr. Lim Char hing

Technical Expert Panel

Associate Professor Dr. Zulkiflle Leman Technical Expert Panel

January 2015

9.0 **REFERENCE**

ACI Committee 440 (2006), "Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars (ACI 440.1R-06)," American Concrete Institute, Farmington Hills, Michigan.

Appendix A

This page is intentionally left blank

GFRP Technologies Sdn. Bhd. 37-2, Block D-1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia.

STANDARDS MALAYSIA ACCREDITED LABORATORI MS ISO/IEC 17025 TESTING SAMM No. 442

JOB NO.: GFRPT-1

DOC. NO.: MCS 14-421

FIBRE REINFORCED POLYMER MATERIAL TESTING

METACOS

Our Control No.	MCS 14-172	Our Ref.	MCS/168/14
Our Job No.	GFRPT-1	Our Document No.	MCS 14-421
Testing Date	14 th November 2014	Report Issued Date	14 th November 2014
Subject	Fibre Reinforced Polymer Material Testing	Attention	Ms. Huang Mei Si
Our Condition	Please do not accept t	his report if it is defaced in	n any way.
Sample Description	Reinforced bar	Type of Fiber	Glass
Fibre Volume Fraction	N/A	Environment Temperature	25.7°C
Nominal Diameter	10 mm	Relative Humidity	71%
Fibre Binding Material	 Resin ED-20 Resin IMTGFA Modifier DEG-1 Alcohol 	Conditioning	The sample was left at the tested humidity and temperature for at least 24 hours before proceeding with the test.
Type of Liquid Used for Volume Measurement	Water	Surface Modification	Only at the area within the sleeve of the tensile specimen

Test Required				
Item	Description	Test Code	Qty	
1	Cross-Sectional Area Determination	ACI 440 3R-04	1	
2	Full Tensile Test	ASTM D7205 : 2006	1	
		ACI 440.3R-04		

Thank You for choosing Metallurgical Consultancy And Services Sdn. Bhd. as your preferred testing laboratory

Please check photocopy of this report with the original

This report should not be photocopied or transmitted electronically without written permission from MCS

DATE	14-11-2014	METALLURGICAL CONSULTANCY AND SERVICES SDN. BHD. (72515-X)	PREPARED BY Ameer
DACE	1/7	No. 20 Jalan U5/17, Seksyen U5 (PS), 40150 Bandar Shah Alam, Selangor, Malaysia	C. C.
PAGE	1//	1el : 603-78450730/40 Fax : 603-78450729/37/39	REVIEWED BY Dr. C. L. Lim

GFRP Technologies Sdn. Bhd. 37-2, Block D-1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia.

JOB NO.: GFRPT-1 DOC. NO.: MCS 14-421

METACOS

FIBRE REINFORCED POLYMER MATERIAL TESTING

Our Ref. No.	MCS/168/14	Control No.	MCS 14-172	
Temperature	25.7°C	Humidity	71%	
<i>Our</i> Condition : Please do not accept this report if it has been altered or defaced in anyway				

Cross-Sectional Area Determination 1.

Formula as provided by ACI 440.3R-04, Part 2, B.1 under clause 9.1:

$A = \frac{\Delta V}{L} \times 1000 = \frac{V_1 - V_0}{L} \times 1000$	Where, A	= Cross-sectional area
	ΔV	= Volume of the GFRP
	V_0	= Volume before submerging GFRP
	V_1	= Volume after submerging GFRP
	L	= Average specimen length

Specimen	Length (mm)	L (mm)	V ₁ (ml)	V ₀ (ml)	ΔV (ml)	A (mm ²)	Equivalent Ø (mm)	Equivalent Circumference (mm)
	202.76	000.50	000	220	10	50.00	0.00	27.20
1	202.66	202.59	232	220	12	59.23	8.68	27.28
	202.34							
	202.02							
2	201.48	202.04	232	220	12	59.39	8.70	27.32
	202.62			-			-	-
	201.82							
3	202.22	202.19	232	220	12	59.35	8.69	27.31
	202.52							
	202.60							
4	202.58	202.61	232	220	12	59.23	8.68	27.28
	202.64							
	200.22							
5	200.12	200.18	232	220	12	59.95	8.74	27.44
	200.20	1						
Grand Average					59.43	8.70	27.33	

Please check photocopy of this report with the original

This report should not be photocopied or transmitted electronically without written permission from MCS

DATE 14-11-2014	METALLURGICAL CONSULTANCY AND SERVICES SDN. BHD. (72515-X)	PREPARED BY Ameer
	No. 20 Jalan U5/17, Seksyen U5 (PS), 40150 Bandar Shah	Cerent
	Alam, Selangor, Malaysia	
PAGE 2/7	Tel : 603-78450730/40 Fax : 603-78450729/37/39	REVIEWED BY Dr. J.C. L. Lim

GFRP Technologies Sdn. Bhd. 37-2, Block D-1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia.

JOB NO.: GFRPT-1

DOC. NO.: MCS 14-421

FIBRE REINFORCED POLYMER MATERIAL TESTING

Our Ref. No.	MCS/168/14	Control No.	MCS 14-172		
Temperature	25.7°C	Humidity	71%		
Our Condition :	Please do not accept this report if it has been altered or defaced in anyway				

Mean of nominal tensile area	59.43 mm²
Standard deviation of tensile area	0.30
Equivalent Diameter per Set	8.70 mm
Equivalent Circumference per Set	27.33 mm

:

:

Mr. Sharifah Binti Mohd. Nazri

2. Full Tensile Test

Control No.	MCS 14-172			
Nominal Tensile Area (mm ²)	59.53			
Yield Load (N)	N/A			
Yield Stress (N/mm ²)	N/A			
Maximum Load (N)	59692			
Tensile Strength (N/mm ²)	1002.75			
Mode of Failure	Brittle			
Conversion of N/mm ² to psi is throu	Conversion of N/mm ² to psi is through multiplying N/mm ² by 145.04			

Test conducted by

Mr. Ameer Khan Bin Ibram Khan

Please check photocopy of this report with the original This report should not be photocopied or transmitted electronically without written permission from MCS

DATE 14-11-2014

METALLURGICAL CONSULTANCY AND SERVICES SDN. BHD. (72515-X) No. 20 Jalan U5/17, Seksyen U5 (PS), 40150 Bandar Shah Alam, Selangor, Malaysia Tel : 603-78450730/40 Fax : 603-78450729/37/39

PAGE 3/7

Test conducted by

GFRP Technologies Sdn. Bhd. 37-2, Block D-1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia.

JOB NO.: GFRPT-1

DOC. NO.: MCS 14-421

FIBRE REINFORCED POLYMER MATERIAL TESTING

Our Ref. No.	MCS/168/14	Control No.	MCS 14-172
Temperature	25.7°C	Humidity	71%
Our Condition :	Please do not accept this	report if it has be	en altered or defaced in anyway

Calculation of Young's Modulus

The Young's Modulus also known as the Elastic Modulus is the measure of the material's stiffness. Naturally, the greater the stiffness, the greater the value of the Young's Modulus.

An extensioneter was attached to the sample during the tensile test to obtain an accurate measurement of the sample's elongation; thus, providing the alternate tensile graph on page 7/7. The formula and calculation of the Young's Modulus for MCS 14-172 is as below:

Young's Modulus $= \frac{\text{Stress}}{\text{Strain}}$] = $\frac{(27,100 - 8,600)/59.430}{(0.41 - 0.13)/42}$ = 46.69 GPa

Young's Modulus of Other Materials ^[1,2] :				
Mild Steel	210 GPa	Concrete	16.5 - 17 GPa	
Glass	50 - 90 GPa	Epoxy Resins	2 - 3 GPa	

Reference:

[1] SchoolPhsics, Elastic Moduli and The Young Modulus Sourced from:http://www.schoolphysics.co.uk/age16-19/Properties%20of%20matter/Elasticity/text/Elastic_moduli_and_Young_modulus/index.html

[2] The Engineering Toolbox, Young Modulus for Some Common Materials Sourced from:http://www.engineeringtoolbox.com/young-modulus-d_417.html

Please check photocopy of this report with the original This report should not be photocopied or transmitted electronically without written permission from MCS

DATE	14-11-2014	METALLURGICAL CONSULTANCY AND SERVICES SDN. BHD. (72515-X) No. 20 Jalan U5/17, Seksyen U5 (PS), 40150 Bandar Shah	PREPARED BY Ameer
PAGE	4/7	Alam, Selangor, Malaysia Tel : 603-78450730/40 Fax : 603-78450729/37/39	REVIEWED BY Dr. C. L. Lim

CLIENT GFRP Technologies Sdn. Bhd. 37-2, Block D-1, Jalan PJU 1/41. Dataran Prima, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia.

MS ISO/IEC 17025 TESTING **SAMM No. 442**

JOB NO.: GFRPT-1

DOC. NO.: MCS 14-421

METACOS FIBRE REINFORCED POLYMER MATERIAL TESTING

Our Ref. No.	MCS/168/14	Control No.	MCS 14-172
Temperature	25.7°C	Humidity	71%
Our Condition :	Please do not accept this	report if it has be	en altered or defaced in anyway

This is to certify that the statements in this report are correct. The above test is based solely on the test coupon submitted by client. The specimens were tested based on principles stated in ASTM D7205-06 and ACI 440.3R-04.

Approved Signatory

Dr. Lim Ching Liang B. Sc Hons) Ph. D. AIMMM FIMM (Metallurgist)

Please check photocopy of this report with the original This report should not be photocopied or transmitted electronically without written permission from MCS

GFRP Technologies Sdn. Bhd. 37-2, Block D-1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia.

JOB NO.: GFRPT-1

DOC. NO.: MCS 14-421

METACOS

FIBRE REINFORCED POLYMER MATERIAL TESTING

Our Ref. No.	MCS/168/14	Control No.	MCS 14-172	
Temperature	25.7°C	Humidity	71%	
<i>Our</i> Condition : Please do not accept this report if it has been altered or defaced in anyway				

Full Tensile Test: Graph of Load Against Displacement

Spec. No.	Test Specimen	Area mm ²	Max Force N	Tensile Strength N/mm ²
TT1	MCS 14-172 FT-1	59.53	59692	1002.75

Please check photocopy of this report with the original

This report should not be photocopied or transmitted electronically without written permission from MCS

GFRP Technologies Sdn. Bhd. 37-2, Block D-1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Selangor Darul Ehsan, Malaysia.

JOB NO.: GFRPT-1

DOC. NO.: MCS 14-421

METACOS

FIBRE REINFORCED POLYMER MATERIAL TESTING

Our Ref. No.	MCS/168/14	Control No.	MCS 14-172	
Temperature	25.7°C	Humidity	71%	
Our Condition : Please do not accept this report if it has been altered or defaced in anyway				

Full Tensile Test: Graph of Load Against Displacement Measured by Extensometer

Spec. No.	Test Specimen	Area mm ²	Max Force N	Tensile Strength N/mm ²
TT1	MCS 14-172 FT-1	59.53	59692	1002.75

Please check photocopy of this report with the original

This report should not be photocopied or transmitted electronically without written permission from MCS

Appendix B

This page is intentionally left blank

SIRIM Berhad (Company No. 367474-V) Technical Services and Consultancy Section Advanced Materials Research Centre

Tel: (603) 5544 6856/58Fax: (603) 5544 6867

CONFIDENTIAL

EVALUATION REPORT

Title:	Coefficient of Thermal Expansion using Dilatometer
Report No:	ER 14084
Date:	13 November 2014
Job No.:	TS 14196
Sample:	GERP Reinforcement Rebar
Company Name:	GFRP Technologies Sdn. Bhd.
Address:	37-2, Block D1 Jalan PJU 1/41, Dataran Prima 47301 Petaling Jaya Selangor

Checked by:

Zalena Saem

Approved by:

1/18 21 Mazlan Mohamad Section Head

SIRIM Berhad (No. Syarikat 367474 - V) 1, Persiaran Dato' Menteri Seksyen 2, Peti Surat 7035 40700 Shah Alam MALAYSIA Tel: 60-3-55446000 Hotline: 60-3-55103635 Faks: 60-3-55108095 Website : www.sirim.my

REPORT	NO.:

ER 14084

TOTAL NO. OF PAGES: 5PAGE: 2This report is NOT a Quality Assurance Certificate NOR an Approval Permit. This report covers
only samples submitted by the clients. This report shall not be published/advertised in part or in
full, without prior written approval from SIRIM Berhad.

SAMPLE IDENTIFICATION

Five (5) samples of GFRP reinforcement rebar, length 60 cm with diameter of 4 mm, 6 mm, 8 mm, 10 mm and 12 mm respectively were received on 16 October 2014 for coefficient of thermal expansion (CTE) test.

SPECIFICATION/ TEST METHOD

The coefficient of thermal expansion (CTE) test from 30°C to 100°C with heating rate of 5°C /min was conducted using Linseis, Dilatometer.

RESULTS

The CTE results are shown in Tables 1 to 5. The CTE curves are exhibited in Appendix.

SIRIM Berhad

(No. Syarikat 367474 - V) 1, Persiaran Dato' Menteri Seksyen 2, Peti Surat 7035 40700 Shah Alam MALAYSIA Tel: 60-3-55446000 Hotline: 60-3-55103535 Faks: 60-3-55108095 Website : www.sirim.my

REPORT NO .:

ER 14084

TOTAL NO. OF PAGES: 5 PAGE: 3

This report is NOT a Quality Assurance Certificate NOR an Approval Permit. This report covers only samples submitted by the clients. This report shall not be published/advertised in part or in full, without prior written approval from SIRIM Berhad.

Tommouture	Coefficient of Thermal Expansion (x 10 ⁻⁶ K ⁻¹)			
(°C)	1	2	3	Average
30	3.23	8.63	5.61	5.82
40	6.41	9.21	7.07	7.56
50	7.06	9.47	7.26	7.93
60	6.54	9.28	7.48	7.77
. 70	5.57	7.65	7.03	6.75
80	5.24	7.53	6.84	6.54
90	4.96	7.34	6.68	6.33
100	5.04	7.07	6.52	6.21

Table 1. CTE of GFRP reinforcement rebar 4 mm

Table 2. CTE of GFRP reinforcement rebar 6 mm

Tamparatura	Coefficient of Thermal Expansion (x 10 ⁻⁶ K ⁻¹)			
(°C)	1	2	3	Average
30	6.50	5.74	4.48	5.57
40	7.52	7.26	6.16	6.98
50	8.46	8.41	7.02	7.96
60	8.64	8.85	7.47	8.32
70	8.61	8.67	7.47	8.25
. 80	6.98	6.83	5.87	6.56
90	3.66	1.79	5.43	3.63
100	3.44	0.76	5.38	3.19

SIRIM Berhad

(No. Syarikat 367474 - V) 1, Persiaran Dato' Menteri Seksyen 2, Peti Surat 7035 40700 Shah Alam MALAYSIA Tel: 60-3-55446000 Hotline: 60-3-55103535 Faks: 60-3-55108095 Website : www.sirim.my

REPORT NO.:

ER 14084

PAGE: 4

TOTAL NO. OF PAGES: 5 This report is NOT a Quality Assurance Certificate NOR an Approval Permit. This report covers only samples submitted by the clients. This report shall not be published/advertised in part or in full, without prior written approval from SIRIM Berhad.

	Coefficient of Thermal Expansion (x 10 ⁻⁶ K ⁻¹)			
l'emperature (°C)	1	2	3	Average
30	5.44	7.25	4.98	5.89
40	6.39	7.52	6.08	6.66
50	7.26	8.12	6.85	7.41
60	7.80	8.60	7.19	7.86
70	7.87	8.55	7.38	7.93
80	7.74	7.48	7.46	7.56
90	7.08	6.93	7.33	7.11
100	6.91	6.81	7.13	6.95

Table 3. CTE of GFRP reinforcement rebar 8 mm

Table 4. CTE of GFRP reinforcement rebar 10 mm

	Coefficient of Thermal Expansion (x 10 ⁻⁶ K ⁻¹)			
Temperature (°C)	1	2	3	Average
30	5.14	6.96	6.47	6.19
40	6.60	7.24	6.69	6.84
50	7.49	7.59	7.33	7.47
60	7.87	8.27	7.78	7.97
70	7.93	8.33	7.99	8.08
.80	7.86	8.11	8.27	8.08
90	7.78	7.94	7.91	7.88
100	7.76	7.84	7.50	7.70

SIRIM Berhad

(No. Syarikat 367474 - V) 1, Persiaran Dato' Menteri Seksyen 2, Peti Surat 7035 40700 Shah Alam MALAYSIA Tel: 60-3-55446000 Hotline: 60-3-55103535 Faks: 60-3-55108095 Website : www.sirim.my

REPORT NO .:

TOTAL NO. OF PAGES: 5

ER 14084

PAGE: 5

This report is NOT a Quality Assurance Certificate NOR an Approval Permit. This report covers only samples submitted by the clients. This report shall not be published/advertised in part or in full, without prior written approval from SIRIM Berhad.

	Coefficient of Thermal Expansion (x 10 ⁻⁶ K ⁻¹)			
Temperature (°C)	1	2	3	Average
30	6.48	6.58	6.79	6.62
40	7.41	6.80	7.67	7.29
50	7.82	7.51	8.18	7.84
60	8.15	7.86	8.52	8.18
. 70	8.38	7.90	8.60	8.29
80	8.33	7.92	8.68	8.31
90	8.01	7.75	8.38	8.05
100	7.58	7.35	7.92	7.62

Table 5. CTE of GFRP reinforcement rebar 12 mm

SIRIM Berhad

(No. Syarikat 367474 - V) 1, Persiaran Dato' Menteri Seksyen 2, Peti Surat 7035 40700 Shah Alam MALAYSIA Tel: 60-3-55446000 Hotline: 60-3-55103535 Faks: 60-3-55108095 Website : www.sirim.my

Appendix C

This page is intentionally left blank

References

Sea wal

LF RP **GFRP Technologies Sdn Bhd**

Contact Us

Address:

Malaysia office: 37-2, Block D1, Jalan PJU 1/41, Dataran Prima, 47301 Petaling Jaya, Malaysia

Tel : +603 7804 3101 Fax : +603 7805 1529 e-mail : enquiries@gfrp-tech.com Website : www.gfrp-tech.com

Concrete/ masonry strengthening Tunneling

COST EFFECTIVE Description of GFRP reinforcement

LIGHTWEIGHT Range of Applications

Fibreglass reinforcement "GFRP Technologies"

is a fibreglass rod with a diameter of 4 mm to 20mm with a spiral ribbed profile consisting of fibreglass related polymer-based epoxy resin. Non-toxic, the degree of impact on the human body and the environment relates to hazard class 4 (low hazard) Standard (rOCT 12.1.007.)

GFRP Technologies is a dynamic company specializing in the distribution of reinforcements made of composite materials. GFRP Technologies offers an innovative reinforcement system, that can be utilized in many applications within the construction industry.

There is enormous potential for composite materials, especially in the construction industry. No other material is so versatile, meets sustainability requirements and has clear economic advantages for clients.

Composite rebar can be successfully applied in the following areas of construction:

RELIABLE Comparative characteristics of

STEEL AND FIBERGLASS REINFORCEMENT

1		Rebar			
	CHARACTERISTICS	Metal reinforcement MS500	FRP reinforcement GFRP Technologies		
1	Material	Steel	Fiberglass, soaked in a polymer based on epoxy resin		
1	Ultimate tensile strength, MPa	500	1200		
1	Modulus of elasticity, MPa	200 000	55 000		
1	Elongation, %	25	2,2		
1	Corrosion resistance to aggressive media	Subject to corrosion	Not subject to corrosion		
1	Heat conduction	Is a head-conducting	Is not heat-conducting		
1	Electroconductivity	Conducts electricity	Non-conducting - is a dielectric		
i	Produced profiles	6 - 80	4 - 20		
1	Length	The rods of length 6-12 m	According to customer request		
	Environmentally friendly	ls environmentally friendly	Is not toxic, the degree of impact on humans and the environment belongs to the 4 hazard class (low hazard).		
1	Longevity	In accordance with building standards	Predicted life at least 80 years		
1		6 mm	4 mm		
1		8 mm	6 mm		
1		10 mm	7 mm		
-	GFRP equivalents	12 mm	8 mm		
1	for steel rebar	14 mm	10 mm		
1		16 mm	12 mm		
1		18 mm	14 mm		
1		20 mm	16 mm		
i		6 mm - 0.222	4 mm - 0.02		
i	Weight (with equal	8 mm - 0.395	6 mm - 0.05		
1		10 mm - 0.67	7 mm - 0.07		
1	strength on the	12 mm - 0.92	8 mm - 0.08		
1	replacement), kg	14 mm - 1.28	10 mm - 0.12		
1		16 mm - 1.58	12 mm - 0.20		
1		18 mm - 2.0	14 mm - 0.26		
1		20 mm - 2.47	16 mm - 0.35		

Appendix D

This page is intentionally left blank

Product Description

Glass Fiber Reinforced Polymer

Contents

Fracht Aeronautica	4
GFRP Rebar	4
Properties	5
Advantages of Rebar compared to reinforcing s	teel6
Advantages of the use of Rebar	8
Precast concrete elements	9
Road and Rail infrastructure	10
Building	11
Tunneling & Civil Engineering	12
Industry	13
Water and Marine	14
Technical Data	15
Product	16
References	17
Guidelines	18

FRACHT AERONAUTICA

Fracht Aeronautica is a dynamic company specializing in the distribution of reinforcements made of composite materials. Fracht Aeronautica offers an innovative reinforcement system, that can be utilized in many applications within the construction industry.

There is enormous potential for composite materials, especially in the construction industry. No other material is so versatile, meets sustainability requirements and has clear economic advantages for clients.

GFRP REBAR

As constructional material, steel has been a huge success story ever since the industrial revolution. However, steel also has its disadvantages, such as its low resistance to corrosion and the resulting limited lifetime, which has lead engineers to look for alternative solutions. Fiber composites are a good alternative which have been successfully used since the 1980's in various industries (e.g. automotive, aircraft ships and construction). One of the most prominent among composites is glass fiber reinforced plastics (GFRP).

With its desirable physical properties and major advantages over steel, GFRP is destined to be used in many applications in modern construction industry and remedy a magnitude of previously unsolvable problems. One of its most interesting applications is its use as concrete reinforcement. After extensive development and certified testing

Properties of GFRP REBAR

The product properties of **GFRP Rebar** are proven to offer clear advantages in economy quality and technology of construction. The product is easy to handle and has numerous applications in the most demanding applications. It is characterized by a high tensile strength and strong resistance to corrosion, chemicals and chlorides. It is highly suitable for applications that are sensitive to electric or magnetic fields or require thermal conductivity.

GFRP Rebar allows for the possibility of reduced concrete cover and extending the life of the construction element considerably. Therefore a new standard of sustainability is achieved.

GFRP Rebar of Fracht Aeronautica creates a reinforcement technology, which combines modern construction with a clear economic value.

corrosion resistant

high tensile strength

resistant to Chemicals

chloride resistant

electrically insulated

thermally insulated

non-magnetic

lightweight

easily workable

economical

Advantages of **GFRP Rebar** in comparison to reinforcing steel

- Thermal anchor
- Transistor rooms
- Lab and MRISignaling (Rail)

GFRP Rebar can be used for surface reinforcement and for crack limitation.

- Industrial floors
 Dry shrinkage prevention
- Parking garages Tunneling

Due to the significantly higher tensile strength of **GFRP Rebar**, when compared to conventional steel rebars much smaller diameters can be used.

Due to the significantly higher tensile strength of **GFRP Rebar**, when compared to conventional rebars, wider spacing between rebars can be selected.

GFRP Rebar is approximately 10% the weight of steel for the equivalent size diameter and length.

Advantages of using **GFRP Rebar**

GFRP Rebar is...

corrosion resistant, thereby the amount of concrete cover can be reduced to a minimum.

cost-efficient, which in addition to less concrete reduces the overall construction costs. In many instances, using this material works out to be less expensive than steel.

resistant, being resistant to corrosive environments significantly extends the overall lifespan.

sustainable, because fewer materials are required, the lifespan of structures are extended with less environmental impact.

corrosion resistant, thereby no rusting occurs as a result of carbonation of the concrete.

corrosion-free, which extends the intervals between renovations and minimizes maintenance costs.

not a conductor, therefore the rebar does not conduct any electrical current and is transparent to magnetic fields and radio waves.

non-magnetic, thereby no currents can be induced.

insulated, against electric and magnetic currents and therefore will not affect high voltage appliances used in structures.

Precast concrete elements

Lower cost and shorter construction periods is of paramount importance in modern construction projects. For this reason, use of precast concrete sections has become common-place in todays construction sites.

The requirement for lower costs and shorter times however, do not mean that quality and workmanship can be compromised. This adds ever more increasing demands for prefabricated precast concrete elements. Due to its advantages, **Fracht Aeronautica** is an ideal reinforcement for these elements.

Another great advantage of **Fracht Aeronautica** is the significantly reduced amount of reinforcement and concrete cover. This results in much lighter elements, creating design freedom and more importantly, cost savings.

Pipe

Girder

Walls and Ceilings

Road and Rail infrastructure

Growing infrastructure and increasing demand for more roads, rail networks and bridges, and inevitable contact with harsh natural forces of nature, leads to the need for costly regular repair, restoration and maintenance.

Fracht Aeronautica can reduce costs of any initial investment, maintenance and renovation. The protection of structures against chlorides usually require expensive alternatives and require increased concrete cover.

These issues can be eliminated with the use of Fracht Aeronautica rebars.

Bridge piers

Rail tracks

Tunnel

- In situ concrete
- Highway reinforcement

- Railway sleepers
- Railway(Signal)

Buildings

Thermal anchor

Precast elements

Slender walls

The increasing sophistication of residential and working structures poses higher requirements and challenges. Aspects such as healthy living, more efficient building methods, aesthetics and the wish for exceptional design, all play a major role in the building of structures.

The relationship between people and the structures they live in, is becoming ever more important. This point is also a major concern for modern achitects, investors and owners.

GFRP Rebar offers excellent attributes for such structures from both a design and sustainability perspective, as well as being extremely cost efficient and durable.

Foundations

Thermal reinforcement

Exposed concrete

Tunneling and Civil Engineering

In Tunneling, Civil Engineering and Mining, there are various applications for

reinforcement. Installations that use GFRP in diaphragm walls or piles, enable easy and time-efficient boring of tunnels. In parallel, the cost of any manual removal of steel reinforcement in the bored area may be avoided, with the additional benefit of less damage to any of the tunelling equipment being used.

Fracht Aeronautica offers other

advantages; Due to the high resistance to aggressive media, permanent reinforcement is possible, whereby alternative expensive corrosion protection is not necessary. Repair and maintenance costs are also significantly reduced.

Enormous savings can be achieved by using GFRP bolts and shotcrete in tunneling.

Viaducts and Tunnels

Industry

Industrial buildings are an essential part of everyday life. In industrial enterprises, different products are produced that make modern life easier. Such structures can usually be heavily loaded due to different production methods corrosive environments and strong magnetic fields.

Fracht Aeronautica offers cost effective ways to address such problems. An example of this can be outlined in the use of expensive Stainless-Steel reinforcement in Substations which can be replaced by Fracht Aeronautica This was previously necessary to prevent magnetic fields. Other such examples are Car Parks and Petrol Stations, that can avoid the cost of using protective materials and layers to prevent salt induced corrosion.

Industrial flooring

Parking garages

Chemical plants, oil and gas refineries

- Airports
- Production and Assembly halls
- Substations
- Aluminium and Steel Works
- Sewage treatment

- Cooling towers
- Hospital MRI
- Laboratories
- Incineration plants
- Car Washes
- Petrol Stations
- Desalination plants

Water and Marine

The use of water, whether for travel, energy or treatment, is an essential part of industry and construction. These structures are highly exposed to aggressive media, such as pollution, salts and chemicals, resulting in high and recurring rehabilitation costs.

chloride resistance **GFRP Rebar** of Fracht Aeronautica counteracts cheaper than steel

this by protecting against chemicals & chlorides which consequently destroy the rebar and concrete. Therefore, it is not necessary to use costly Stainless Steel or thicker concrete cover that protects the steel.

Likewise, it makes economic sense that these concrete structures can be built at significantly lower cost and have a much higher service life.

Treatment plant

Hydropower plant

Quay walls and wharfs

- Port facilities
- Jetties
- Sea walls
- Canals
- Piers
- Breakwater

- Coastal reinforcement
- **Tidal Power plant**

resistant to

Chemicals

- Floating structures
- Cut-off Wall
- Dry docks

Products

Straight rebar

Length: up to 12 Meters Diameters (mm): 4, 6, 7, 8, 10, 12, 14, 16, 18, 20 (other diameters available on request)

Coiled rebar

Length: 50 meters per coil

Diameters (mm): 4, 6, 7, 8, 10

Shapes

Different shapes available on request: L-, U-, O- shapes

Accessories

Clips Spacer Binder

References

Foundations

Petrol Stations

Ceilings

Industrial floors

Rail traverse

Sea walls

CONSTRUCTION INDUSTRY DEVELOPMENT BOARD Tingkat 10, Menara Dato' Onn, Putra World Trade Centre (PWTC), No. 45, Jalan Tun Ismail, 50480 Kuala Lumpur

CONSTRUCTION RESEARCH INSTITUTE OF MALAYSIA Construction Research Institute of Malaysia (MKRM), CIDB Wilayah Persekutuan, 1st Floor, Block E, Lot 8, Jalan Chan Sow Lin, 55200 Kuala Lumpur